Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot

نویسندگان

  • Andrée S. George
  • Clayton E. Cox
  • Prerak Desai
  • Steffen Porwolik
  • Weiping Chu
  • Marcos H. de Moraes
  • Michael McClelland
  • Maria T. Brandl
  • Max Teplitski
چکیده

Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot.IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility are identified as contributors to the persistence of Salmonella spp. in soft rots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salmonella enterica Suppresses Pectobacterium carotovorum subsp. carotovorum Population and Soft Rot Progression by Acidifying the Microaerophilic Environment

UNLABELLED Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pa...

متن کامل

Salmonella SdiA recognizes N-acyl homoserine lactone signals from Pectobacterium carotovorum in vitro, but not in a bacterial soft rot.

Genomes of Salmonella enterica isolates, including those linked to outbreaks of produce-associated gastroenteritis, contain sdiA, which encodes a receptor of N-acyl homoserine lactones (AHL). AHL are the quorum-sensing signals used by bacteria to coordinately regulate gene expression within -their populations. Because S. enterica does not produce its own AHL, SdiA is hypothesized to function in...

متن کامل

Draft Genome Sequence for ICMP 5702, the Type Strain of Pectobacterium carotovorum subsp. carotovorum That Causes Soft Rot Disease on Potato

Pectobacterium species are economically important bacteria that cause soft rotting of potato tubers in the field and in storage. Here, we report the draft genome sequence of the type strain for P. carotovorum subsp. carotovorum, ICMP 5702 (ATCC 15713). The genome sequence of ICMP 5702 will provide an important reference for future phylogenomic and taxonomic studies of the phytopathogenic Entero...

متن کامل

Colonization patterns of an mCherry-tagged Pectobacterium carotovorum subsp. brasiliense strain in potato plants.

Pectobacterium carotovorum subsp. brasiliense is a newly identified member of the potato soft rot enterobacteriaceae. The pathogenesis of this pathogen is still poorly understood. In this study, an mCherry-P. carotovorum subsp. brasiliense-tagged strain was generated to study P. carotovorum subsp. brasiliense-potato plant interactions. Prior to use, the tagged strain was evaluated for in vitro ...

متن کامل

Draft Genome Sequences for Canadian Isolates of Pectobacterium carotovorum subsp. brasiliense with Weak Virulence on Potato

Pectobacterium carotovurum subsp. brasiliense causes soft rot and blackleg diseases on potato. Here, we report the draft genome sequences of three weakly virulent P. carotovurum subsp. brasiliense strains isolated in Canada. Analysis of these genome sequences will help to pinpoint differences in virulence among P. carotovurum subsp. brasiliense strains from tropical/subtropical and temperate re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2018